博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
android handler异步处理机制详解(线程局部存储(TLS)知识点)
阅读量:5113 次
发布时间:2019-06-13

本文共 11370 字,大约阅读时间需要 37 分钟。

预备知识:

线程局部存储(TLS)

我们可以从变量作用域的角度来理解什么是线程局部存储:

    函数内部变量 :作用域为该函数,即每次调用该函数时该变量都会回到初始值。

    类内部变量:其作用域为该类产生的对象,即只要对象没有被销毁,则对象的变量一直保持。

    类内部静态变量:其作用域是整个进程,即只要在该进程中,即该变量的值就一直保持,无论该类构造过多少对象,该变量只有一个赋值,并一直保持。(编译器内部会为静态变量分配单独的内存空间)

    线程局部存储:其作用域为同一个线程,当同一个线程中调用线程局部存储对象时,其值只有一个。 

ThreadLocal

java是用 ThreadLocal 类来存储线程局部存储对象的类,它的构造函数为空,是利用set()和get()方法来保存和获取线程局部存储对象的。该对象将所有同一个线程的线程局部存储对象保存在 values对象内(没有具体了解应该是链表结构)。  

public void set(T value) {        Thread currentThread = Thread.currentThread();        Values values = values(currentThread);        if (values == null) {            values = initializeValues(currentThread);        }        values.put(this, value);    }

  set方法内首先根据线程对象获取values对象,若没有则初始化,将要保存的对象put进去。

public T get() {        // Optimized for the fast path.        Thread currentThread = Thread.currentThread();        Values values = values(currentThread);        if (values != null) {            Object[] table = values.table;            int index = hash & values.mask;            if (this.reference == table[index]) {                return (T) table[index + 1];            }        } else {            values = initializeValues(currentThread);        }        return (T) values.getAfterMiss(this);    }

  get方法,首先是利用当前线程来获取存储“线程局部存储”对象的values对象,然后获取存储的所有对象的数组table,然后根据hash和value.mask得到获取的index值,最终获取相应的线程局部存储对象。

 

好了预备知识介绍完了,下面进入正题:

  为什么要介绍线程局部存储呢?其实我们activity创建前activity所在的线程就会调用Looper.prepare()方法和Looper.loop()方法:为该线程创建存储“线程局部存储”对象的对象sThreadLocal,并为activity所在的线程创建一个Looper对象,并将Looper保存为线程局部存储对象的values里面,并启动消息队列运行机制。

// sThreadLocal.get() will return null unless you've called prepare(). static final ThreadLocal
sThreadLocal = new ThreadLocal
();

   当不调用preprare()时sTreadLocal为空

private static void prepare(boolean quitAllowed) {        if (sThreadLocal.get() != null) {            throw new RuntimeException("Only one Looper may be created per thread");        }        sThreadLocal.set(new Looper(quitAllowed));    }

  该方法首先判断是否已经存储了Looper若存储了就抛出异常,因为每个线程只能有一个Looper对象,若没有保存就会保存Looper为线程局部存储对象。

 而上面的new Looper()创建Looper的方法原型如下:

private Looper(boolean quitAllowed) {        mQueue = new MessageQueue(quitAllowed);        mThread = Thread.currentThread();    }

Looper会创建一个消息队列。

  下面我们看看创建了activity前调用loop()做的事情:

public static void loop() {        final Looper me = myLooper();        if (me == null) {            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");        }        final MessageQueue queue = me.mQueue;        // Make sure the identity of this thread is that of the local process,        // and keep track of what that identity token actually is.        Binder.clearCallingIdentity();        final long ident = Binder.clearCallingIdentity();        for (;;) {            Message msg = queue.next(); // might block            if (msg == null) {                // No message indicates that the message queue is quitting.                return;            }            // This must be in a local variable, in case a UI event sets the logger            Printer logging = me.mLogging;            if (logging != null) {                logging.println(">>>>> Dispatching to " + msg.target + " " +                        msg.callback + ": " + msg.what);            }            msg.target.dispatchMessage(msg);            if (logging != null) {                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);            }            // Make sure that during the course of dispatching the            // identity of the thread wasn't corrupted.            final long newIdent = Binder.clearCallingIdentity();            if (ident != newIdent) {                Log.wtf(TAG, "Thread identity changed from 0x"                        + Long.toHexString(ident) + " to 0x"                        + Long.toHexString(newIdent) + " while dispatching to "                        + msg.target.getClass().getName() + " "                        + msg.callback + " what=" + msg.what);            }            msg.recycleUnchecked();        }    }

  myLooper()是获取当前线程的Looper对象

  msg.target.dispatchMessage(msg),msg.target是获取发送msg消息对象,即handler;handler调用dispatchMessage来处理消息。handler 里面的dispatchMessage()里面实际是利用handleMessage()处理的,因此,当我们想要异步处理消息的时候只需要构建自己handler,并覆写它们的消息处理的方法。因为Looper中msg会自动获取我们创建的handler,并调用我们自己覆写的处理方法。

  msg.recycleUnchecked() Message对象里面用数据池保存message对象,因此为了频繁删除创建,当消息处理完后就标记为空闲状态回收重复利用。

  queue.next() 是从消息队列MessageQueue中取出一条消息: 

Message next() {        // Return here if the message loop has already quit and been disposed.        // This can happen if the application tries to restart a looper after quit        // which is not supported.        final long ptr = mPtr;        if (ptr == 0) {            return null;        }        int pendingIdleHandlerCount = -1; // -1 only during first iteration        int nextPollTimeoutMillis = 0;        for (;;) {            if (nextPollTimeoutMillis != 0) {                Binder.flushPendingCommands();            }            nativePollOnce(ptr, nextPollTimeoutMillis);            synchronized (this) {                // Try to retrieve the next message.  Return if found.                final long now = SystemClock.uptimeMillis();                Message prevMsg = null;                Message msg = mMessages;                if (msg != null && msg.target == null) {                    // Stalled by a barrier.  Find the next asynchronous message in the queue.                    do {                        prevMsg = msg;                        msg = msg.next;                    } while (msg != null && !msg.isAsynchronous());                }                if (msg != null) {                    if (now < msg.when) {                        // Next message is not ready.  Set a timeout to wake up when it is ready.                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);                    } else {                        // Got a message.                        mBlocked = false;                        if (prevMsg != null) {                            prevMsg.next = msg.next;                        } else {                            mMessages = msg.next;                        }                        msg.next = null;                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);                        msg.markInUse();                        return msg;                    }                } else {                    // No more messages.                    nextPollTimeoutMillis = -1;                }                // Process the quit message now that all pending messages have been handled.                if (mQuitting) {                    dispose();                    return null;                }                // If first time idle, then get the number of idlers to run.                // Idle handles only run if the queue is empty or if the first message                // in the queue (possibly a barrier) is due to be handled in the future.                if (pendingIdleHandlerCount < 0                        && (mMessages == null || now < mMessages.when)) {                    pendingIdleHandlerCount = mIdleHandlers.size();                }                if (pendingIdleHandlerCount <= 0) {                    // No idle handlers to run.  Loop and wait some more.                    mBlocked = true;                    continue;                }                if (mPendingIdleHandlers == null) {                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];                }                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);            }            // Run the idle handlers.            // We only ever reach this code block during the first iteration.            for (int i = 0; i < pendingIdleHandlerCount; i++) {                final IdleHandler idler = mPendingIdleHandlers[i];                mPendingIdleHandlers[i] = null; // release the reference to the handler                boolean keep = false;                try {                    keep = idler.queueIdle();                } catch (Throwable t) {                    Log.wtf(TAG, "IdleHandler threw exception", t);                }                if (!keep) {                    synchronized (this) {                        mIdleHandlers.remove(idler);                    }                }            }            // Reset the idle handler count to 0 so we do not run them again.            pendingIdleHandlerCount = 0;            // While calling an idle handler, a new message could have been delivered            // so go back and look again for a pending message without waiting.            nextPollTimeoutMillis = 0;        }    }

  nativePollOnce(ptr , nextPollTimeoutMillis)是一个JNI函数,其作用是从消息队列中取出一个消息。MessageQueue内部本身没有保存消息队列,真正的消息队列保存在C代码中。C环境中创建了一个NativeMessageQueue数据对象,也就是nativePollOnce方法的第一个参数ptr,它是个long变量,在构造MessageQueue时候初始化,在C环境中利用它来获得NativeMessageQueue对象.在C环境中,若消息队列中无消息,会导致当前线程挂起(wait),若队列有消息,则C代码会把当前消息复值给java环境中的mMessages变量。

  synchronized (this) 同步代码块,

    主要是判断执行消息的时间是否到了(有的消息本身指定了处理的时刻,消息是以队列形式存储,若读取没到执行时刻就执行下一个消息,下次读取仍然从队列头读取,每次都会判断是否到了执行时间),若到了就返回消息,并将mMessages置为空;若时间没有到则尝试读取下一个消息。

    若mMessage为空,则队列里没有消息,调用mPendingIdleHandlers里的空闲回调函数。

MessageQueue是用enqueueMessage函数添加消息的:

boolean enqueueMessage(Message msg, long when) {        if (msg.target == null) {            throw new IllegalArgumentException("Message must have a target.");        }        if (msg.isInUse()) {            throw new IllegalStateException(msg + " This message is already in use.");        }        synchronized (this) {            if (mQuitting) {                IllegalStateException e = new IllegalStateException(                        msg.target + " sending message to a Handler on a dead thread");                Log.w(TAG, e.getMessage(), e);                msg.recycle();                return false;            }            msg.markInUse();            msg.when = when;            Message p = mMessages;            boolean needWake;            if (p == null || when == 0 || when < p.when) {                // New head, wake up the event queue if blocked.                msg.next = p;                mMessages = msg;                needWake = mBlocked;            } else {                // Inserted within the middle of the queue.  Usually we don't have to wake                // up the event queue unless there is a barrier at the head of the queue                // and the message is the earliest asynchronous message in the queue.                needWake = mBlocked && p.target == null && msg.isAsynchronous();                Message prev;                for (;;) {                    prev = p;                    p = p.next;                    if (p == null || when < p.when) {                        break;                    }                    if (needWake && p.isAsynchronous()) {                        needWake = false;                    }                }                msg.next = p; // invariant: p == prev.next                prev.next = msg;            }            // We can assume mPtr != 0 because mQuitting is false.            if (needWake) {                nativeWake(mPtr);            }        }        return true;    }

  该方法先将参数msg赋值给mMessage,然后利用nativeWake写入消息到C环境,若消息线程处于wait状态,则唤醒。

  

转载于:https://www.cnblogs.com/bokeofzp/p/6674118.html

你可能感兴趣的文章
C# 类(10) 抽象类.
查看>>
Vue_(组件通讯)子组件向父组件传值
查看>>
jvm参数
查看>>
我对前端MVC的理解
查看>>
Silverlight实用窍门系列:19.Silverlight调用webservice上传多个文件【附带源码实例】...
查看>>
2016.3.31考试心得
查看>>
mmap和MappedByteBuffer
查看>>
Linux的基本操作
查看>>
转-求解最大连续子数组的算法
查看>>
对数器的使用
查看>>
【ASP.NET】演绎GridView基本操作事件
查看>>
ubuntu无法解析主机错误与解决的方法
查看>>
尚学堂Java面试题整理
查看>>
MySQL表的四种分区类型
查看>>
[BZOJ 3489] A simple rmq problem 【可持久化树套树】
查看>>
STM32单片机使用注意事项
查看>>
swing入门教程
查看>>
好莱坞十大导演排名及其代表作,你看过多少?
查看>>
Loj #139
查看>>
hihocoder1187 Divisors
查看>>